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Abstract 
 

The nonlinear plasma dynamic equations can be converted to a set of ordinary differential 
equations in time using a Fourier-Beltrami expansion. Using a truncated basis set of the Beltrami 
vectors the dynamics can be computed. This unconventional model is used to explore the 
nonlinear stability of compact toroid plasmas. The angular momentum emerges as important 
ingredient in stability, although some poloidal flow appears to be necessary as well. 

 
 
 

I. Introduction: Fourier-Beltrami analysis 
 
A mystery about the stability of field-reversed configurations (FRC) persists after more than 25 years of 
investigation. In particular the ideal tilt mode is predicted to be unstable for all elongated, static FRC 
equilibria. Several stabilizing mechanisms have been investigated, notably two-fluid effects and finite 
Larmor radius (FLR). These are effective for small radius plasmas but not for reactor-relevant sizes. 
Moreover, a large part of the data base of stable FRC experiments lies outside the stable region predicted 
by the best theories. A recent possibility has been suggested by Belova [1] that nonlinear stability is 
achieved by a partly-tilted, dynamical state. Another possible stabilization mechanism suggested in recent 
years is sheared flow [2,3] methods for its analysis are not well developed. In short, stability remains the 
make-or-break issue for FRC as a fusion concept.  
 
In this paper we focus on the possibility of flow stabilization. Here we apply an innovative method for its 
analysis, a Fourier expansion procedure. This method has been used in analyzing plasma turbulence but 
only recently was applied to ideal [4] and resistive [5] stability. This approach differs from familiar finite-
difference (FD) methods in the way that the plasma structure is resolved. FD methods divide the plasma 
into a spatial grid whereas Fourier methods resolve the spatial structure into geometric modes. 
 
The scale of the computational problem is similar for both methods, give a desired level of spatial 
resolution. However Fourier methods should give a clearer picture of mode-mode coupling effects. 
Further, ∇⋅B = 0 can be made automatic with a Fourier expansion (for proper choice of basis set) whereas 
the imperfect satisfaction of this equation remains an issue with FD methods.  
 
The Fourier method adopted here is the Fourier-Beltrami (FB) expansion procedure by which the fields 
and flows are expanded in Beltrami vectors. The Beltrami vectors satisfy 
∇×Yk = ΛkYk with suitable B.C.; Λk is the eigenvalue, and k is the index. The {Yk} is a complete basis set 
for all divergence-free vectors. If then an incompressible plasma is assumed (uniform density so that ∇⋅u 



= 0) then the Beltrami vectors serve as a complete basis set for both the field B(r,t) and flow u(r,t). These 
are expanded as B = ΣBk(t)Yk(r), u = Σuk(t)Yk(r). The vector equations (motion, Maxwell’s) are then 
converted into a system of coupled ordinary differential equations in time. The equation of motion is 
 
           (1) 
 
where the terms on the right side are, successively, the viscous friction, convective inertia, and j×B force. 
The generalized Ohm’s law is 
 
           (2) 
 
The terms are electric field (LHS), resistive friction, u×B term, and Hall effect. The il  is the ion skin 
depth. In the discussion that follows the time evolution of the various Bk, uk will be examined. These are 
referred to as “modes” although they are not the familiar normal modes of linear stability theory. The Mklm 
in these equations are the triple scalar products linking the various modes; they have three indices because 
they link three modes in the manner of a three-wave interation. These give rise to nonlinear mode-mode 
coupling. 
 
 
 

II. Role of angular momentum: clues from minimum energy theory 
 
The importance of angular momentum emerges from the theory of minimum energy states (MES). The 
two-fluid minimum-energy theory minimizes the magnetofluid energy Wmf ~ ∫d3x(B2+u2) subject to 
constraints on the global ideal invariants of the system. For a two fluid these are the helicities for the 
electrons and ions, Ke ~ ∫d3xA⋅∇×A and Ki ~ ∫d3x(A+u)⋅∇×(A+u), respectively. Also, if the domain is 
axisymmetric and there is a free-slip condition at the boundary, then angular momentum is conserved as 
well. Although angular momentum conservation was accounted for in the original minimum-energy work 
of Woltjer [6], it has largely been ignored since then.  
 
The critical role of angular momentum in affecting the state of minimum energy was only recently 
uncovered [7]. Given the invariants {Ke,Ki} the states of stationary energy, found by using the method of 
Lagrange multipliers, is composed of two elements. solving the  is composed of two elements; using the 
Beltrami vectors these are B = B1Y1 + B2Y2, u = u1Y1 + u2Y2 associated with the two eigenvalues, Λ1 and 
Λ2. It was shown [7] that for the MES, one of the eigenvalues, is large, Λ2 → ∞. Even a small dissipation 
would damp the fine-scale element, leaving behind a force-free plasma (Taylor state). However, if 
angular momentum is included among the constraints {Ke,Ki,Lz} then the MES is modified. If the angular 
momentum is comparable to that associated with diamagnetic drift, then the MES is smooth, i.e. its length 
scales are comparable to the domain size. This suggests, although it doesn’t prove, that angular 
momentum is an important ingredient in the  stability of flowing plasmas. 
 
 
 

III. Truncated basis set for nonlinear plasma dynamics 
 
A convenient domain geometry to use is the periodic-cylinder (P-C) because analytic forms are available 
for the Beltrami vectors [8]. This domain is useful for compact toroids of arbitrary elongation. 
Unfortunately the P-C has an important defect with respect to the problem at hand: the full periodic cell  
length is composed of two compact toroid “cells” as shown in Fig. 1. The internal “surfaces” are  
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Y1, Y2: lowest-order 
axisymmetric mode 

Y3, Y4: another 
axisymmetric mode

Y5, Y6: tilt-like 
velocity disturbance 

Y7, Y8: tilt-like 
field disturbance 

Fig. 2. Elements of the 8-pack 
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indicative of the poloidal structure of the lowest-order  
Beltrami vector. The angular momentum of the two cells  
is opposite so that the total angular momentum is zero. It  
is intended that the angular momentum of a single cell be  
constant. This is not so in general. However, for certain  
choices of  the basis set, the angular momentum of a single  
cell may be preserved roughly. In these cases the choice of basis set may restore the actual stabilizing 
effect of conserved angular momentum. On the other hand, the use of a limited basis set is always fraught 
with danger and may lead to apparent stability that will disappear with a more complete basis set. All that 
can be said is that the appearance of stability when angular momentum is preserved is an indicator of its 
stabilizing effect. 
 
 
 

IV. Computational results with “8-pack” 
 
Computations of the dynamical equations (1,2) have been performed for basis sets from 6 (“six-pack”) to  
60 (“60-pack”) basis vectors. Attention is focused here on the 8-pack which in many cases roughly  
preserves the angular momentum. The elements of the 8-pack are shown in Fig. 2. For each of the forms 
there are elements with both positive and negative eigenvalues with the same magnitude. This makes a 
total of four axi-symmetric basis elements (Y1, Y2, Y3, Y4) and four non-axi-symmetric basis elements 
(Y5, Y6, Y7, Y8). 
 
 
 
 
 
 
 
 
 
A. Tilt mode in a static FRC. As a baseline check the stability of the tilt mode in a static FRC is 
computed. In the static FRC the only nonzero axisymmetric coefficients, initially, are B1 = B2 = 0.7. A 1% 
initial disturbance is given to the non-axisymmetric velocity elements u5 = u6 = u7 = u8 = 0.01; the initial 
non-axisymmetric field elements are zero. The  
results of the tilt velocity are shown in Fig. 3.  
The linear growth rate of the tilt mode is γ =  
1.06VA/b where VA is the Alfven speed for the  
reference magnetic field (at midplane on the  
axis) and b is the half-length of the single-cell  
FRC. This result is consistent with linear  
theory. After an initial 1% disturbance,  
nonlinearity is reached after about two tilt 
growth times. The history of the angular  
momentum in Fig. 4. Here Ω is the average  
angular velocity and *S  = a = domain radius ÷ 
 ion skin depth. The angular momentum is conserved only during the linear growth period. 
 
Another way to portray the nonlinear tilt is by a phase plane plot, uk vs Bk for the modes. Figures 5,6 show 
the trajectories of the axi- and non-axi-symmetric modes respectively. The black circle locates the 
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Fig. 1 Periodic cylinder domain 
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Fig. 5. Axi-symmetric modes
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Fig. 9. Axi-sym- 
metric modes 

startining point for the initially non-zero coefficients. Large, persistent, and irregular oscillations are 
apparent. There is no resistive or viscous damping in these computations so that the trajectories do not 
approach a limit cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Unstable example with poloidal flow. Figures 7,8 show an example with significant poloidal flow an 
(also) no initial angular momentum. Here the initial nonzero mode coefficients are B1 = 0.7, B2 = 0.545, u1 
= u2 = −0.4, u5 = u6 = u7 = u8 = 0.1. This example is has Ki = 0, Ke = 1, and zero initial angular momentum, 
but in the dynamical evolution, it is not conserved. Thus the instability of the intial state may be 
exaggerated.  
  
 
 
 
 
 
 
 
 
 
 
 

 
 
C. Stable example with poloidal flow. Consider the same case as in Figs. 7,8 but with initial angular 
momentum: B1 = 0.7, B2 = 0.545, u1 = −0.5502, u2 = −0.2498, u5 = u6 = u7 = u8 = 0.1. This example also 
has Ki = 0, Ke = 1, but angular momentum *SΩ  = −4. The dynamical trajectories are shown in Figs. 9,10. 
Here the plasma is stable with well-bounded perturbations.  
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Note that the angular momentum is roughly conserved. Figures 11,12 show the poloidal field structure 
and the field structure at the midplane, respectively (axisymmetric field elements). Mean fields are shown 
over the time interval 100 to 1000 dimensionless time units. The configuration is a “near” FRC with a 
modest azimuthal field. 
 
 
 
 
 
 
 
 
 
 
 
The 8-pack has the property that it roughly preserves the  
angular momentum in some cases. In general though a  
basis set will not. This is illustrated in Figs. 13 where the  
trajectories for a 60-pack are shown for the same initial  
conditions as in Figs. 9-12. The same modes as in the  
earlier figures are shown although they are numbered  
differently in the 60-pack. Compare the axi-symmetric  
mode trajectories for the 60-pack in Fig. 13 with those for  
the 8-pack in Fig. 9. Evidently the angular momentum is  
not preserved in the 60-pack, and the behavior is unstable.  
What is not know is whether the apparent stability of the 
8-pack is a physical consequence of the angular momen- 
tum conservation or an unphysical consequence of the limited basis set. 
 
D. Stability parameter study. Consider a series of equilibria where only one parameter is varied. Use the 
same initial conditions as in Secs. IV-B,C except for varying u1,u2. If the sum u1 + u2 is fixed at −0.8 but 
the difference between the two is varied, then the poloidal flow is kept the same but the rotation *SΩ  
(hence angular momentum) is varied. The stability is represented in terms of the averaged values of the 
magnetic field for both axisymmetric and non-axisymmetric  
modes. The results are shown in Fig. 14. For rotation *SΩ   
less than about −4 the behavior is stable, i.e. the non- 
axisymmetric mean fields                    and “fluctuations”  
               are relatively small for the non-axisym- 
metric modes. The “smallness” is only relative since the  
computations assume no dissipation so that suppressed  
modes oscillate at a relatively low amplitude rather than  
damping. However, for rotation *SΩ  exceeding about −4,  
the non-axisymmetric field becomes comparable to the  
axisymmetric field, indicating persistent unstable behavior.  
Note that negative rotation (required for stability) is in the  
direction of the ion diamagnetic drift. 
 
Not shown in Fig. 14 is an index of how well the angular  
momentum is preserved. It is roughly constant in the stable  
regime but is not preserved in the unstable regime. Thus the instability may be exaggerated.  
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V. Conclusions 
 
The results presented here strengthen the connection between angular momentum and stability. Hints to 
this fact originally appeared in analysis of minimum energy states, and appear to carry over to time-
dependent plasmas as well. The main caveat that must be kept in mind is that these results are for a very 
limited basis set of eight vectors. Further, the complete basis set, Beltrami functions for a periodic-
cylinder, are set up in such a way that angular momentum conservation does not necessarily play a role. 
However, for certain truncated basis sets and certain initial conditions, the angular momentum of a 
“single-cell” compact toroid is roughly preserved. In these cases apparent stability is achieved for certain 
conditions depending on the angular momentum. The key question is then whether this stability is (a) the 
consequence of taking to small a basis set and therefore excluding dynamics that would actually lead to 
instability, or (b) the consequence of angular momentum conservation. If the former, then the results here 
are unphysical, simply a feature of the incomplete mathematical model. If the latter, then the prediction of 
stability is an actual, physical result. To resolve this question will require the construction of Beltrami 
vectors for a domain where angular momentum conservation of a “single-cell” compact toroid is 
guaranteed. An example of such a domain is the “cylindrical can” investigated in a limited way some 
years ago [9,10].  
 
 

References 
 
[1] E.V. Belova, R.C. Davidson, Hantao Ji, and M. Yamada, Phys. Plasmas 11,2523 (2004). 
 
[2] L. C. Steinhauer and A. Ishida, Phys. Rev. Lett. 79, 3423 (1997). 
 
[3] L. C. Steinhauer and A. Ishida, Phys. Plasmas 5, 2609 (1998). 
 
[4] E.C. Morse, Phys. Plasmas 5, 1354 (1998). 
 
[5] E.C. Morse, D.D. Hua, and T.K. Fowler, International Sherwood Fusion Theory Conference, Santa Fe, 
2-4 April 2001. 
 
[6] L. Woltjer, Proc. Nat. Acad. Sci. 44, 833 (1958). 
 
[7] P. Geren and L.C. Steinhauer, Phys. Plasmas 11, 3646 (2004). 
 
[8] L. Turner, Nucl. Instr. Meth. 207, 23 (1983). 
 
[9] J.M. Finn, W. Manheimer, and E. Ott. Phys. Fluids 24, 1336 (1981).  
 
[10] L. Turner, Phys. Fluids 27, 1677 (1984). 
 
 
 
 


